

U-Boot Reference Manual

 90000852_C

2

© Digi International Inc. 2007. All Rights Reserved.
The Digi logo is a registered trademark of Digi International, Inc.
All other trademarks mentioned in this document are the property of their respective owners.
Information in this document is subject to change without notice and does not represent a commitment on the part of Digi International.
Digi provides this document “as is,” without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of fitness or merchantability for a particular purpose. Digi may make improvements and/or changes in this manual or in the
product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes may be incorporated in new editions of the publication.

Digi International Inc.

11001 Bren Road East

Minnetonka, MN 55343 (USA)

 +1 877 912-3444 or +1 952 912-3444

www.digiembedded.com

http://www.digiembedded.com/

3

Contents

1 Conventions used in this manual...5

2 Acronyms and Abbreviations ...6

3 Introduction ..7
3.1 What is a boot loader? ..7
3.2 What is U-Boot? ..7
3.3 U-Boot Features..7

3.3.1 Customizable footprint ..7
3.3.2 Monitor..7
3.3.3 Variables...8
3.3.4 Kernel images downloadable via Ethernet and USB ..8
3.3.5 Numbers assumed in hexadecimal format..8

3.4 The boot process ..8

4 U-Boot commands ...9
4.1 Overview ...9
4.2 Built-in commands...9

4.2.1 Information commands ...11
4.2.2 Network commands ..11
4.2.3 USB commands..12
4.2.4 Memory commands ..12
4.2.5 Serial port commands...13
4.2.6 I2C commands..13
4.2.7 Environment variable commands..13

5 Environment variables ..14
5.1 Overview ...14
5.2 Simple and recursive variables ...14
5.3 Scripts ...15
5.4 System variables...16

5.4.1 Common system variables..16
5.4.2 Dynamic variables ..17
5.4.3 Digi custom variables..17
5.4.4 Protected variables ...17

6 Boot commands...18
6.1 Overview ...18
6.2 Reading images into RAM ..18

6.2.1 From Ethernet...18
6.2.2 From USB...18
6.2.3 From flash...19

6.3 Booting images in RAM...19
6.4 Direct booting ..20

6.4.1 Direct booting with Microsoft Platform Builder / Visual Studio...21
6.5 Automatic booting ...21

7 Using NVRAM...22
7.1 The intnvram command ..22

7.1.1 Mappings of variables...24
7.2 The flpart command ..24

7.2.1 A partition table entry..25
7.2.2 Changing the partition table ..26

4

8 Firmware update commands ... 27
8.1 Overview... 27
8.2 Updating flash with images in RAM ... 27
8.3 Direct updating ... 28

8.3.1 Update limits ...28

9 U-Boot development ... 29

Index.. 30

5

1 Conventions used in this manual

This list shows the typographical conventions used in this guide:

Style In text, to introduce new terms

Style In text, for command and variable names.

Style In examples, to show the text that should be typed literally by the
user.

Style In text and syntax discussions, to display command variables.

A prompt that indicates the action is performed in the target device.

$ A prompt that indicates the action is performed in the host
computer.

<field> A mandatory field that must be replaced with a value.

[field] An optional field.

[a|b|c] A field that can take one of several values.

This manual also uses these frames and symbols:

This is a warning. It helps solve or to avoid common mistakes
or problems

This is a hint. It contains useful information about a topic

$ This is a host computer session
$ Bold text indicates what must be input

This is a target session
Bold text indicates what must be input

6

2 Acronyms and Abbreviations

BIOS Basic Input Output System

CPU Central Processing Unit

FAT File Allocation Table

I2C Inter-Integrated Circuit

MBR Master Boot Record

NVRAM Non Volatile RAM

OS Operating System

PC Personal Computer

RAM Random Access Memory

TFTP Trivial File Transfer Protocol

USB Universal Serial Bus

7

3 Introduction

3.1 What is a boot loader?

Microprocessors can execute only code that exists in memory (either ROM or RAM), while
operating systems normally reside in large-capacity devices such as hard disks, CD-ROMs, USB
disks, network servers, and other permanent storage media.

When the processor is powered on, the memory does not hold an operating system, so special
software is needed to bring the OS into memory from the media on which it resides. This software
is normally a small piece of code called the boot loader. On a desktop PC, the boot loader resides
on the master boot record (MBR) of the hard drive and is executed after the PC's basic input output
system (BIOS) performs system initialization tasks.

In an embedded system, the boot loader’s role is more complicated because these systems rarely
have a BIOS to perform initial system configuration. Although the low-level initialization of the
microprocessor, memory controllers, and other board-specific hardware varies from board to board
and CPU to CPU, it must be performed before an OS can execute.

At a minimum, a boot loader for an embedded system performs these functions:

 Initializing the hardware, especially the memory controller

 Providing boot parameters for the OS

 Starting the OS

Most boot loaders provide features that simplify developing and updating firmware; for example:

 Reading and writing arbitrary memory locations

 Uploading new binary images to the board's RAM from mass storage devices

 Copying binary images from RAM into flash

3.2 What is U-Boot?

U-Boot is an open-source, cross-platform boot loader that provides out-of-box support for hundreds
of embedded boards and many CPUs, including PowerPC, ARM, XScale, MIPS, Coldfire, NIOS,
Microblaze, and x86.

For more information about the U-Boot project see http://sourceforge.net/projects/u-boot/ and
http://www.denx.de/wiki/DULG/Manual.

3.3 U-Boot Features

3.3.1 Customizable footprint
U-Boot is highly customizable to provide both a rich feature set and a small binary footprint.

3.3.2 Monitor
U-Boot has a command shell (also called a monitor) for working with U-Boot commands to create a
customized boot process.

http://sourceforge.net/projects/u-boot/
http://www.denx.de/wiki/DULG/Manual

8

3.3.3 Variables
U-Boot uses environment variables that can be read or written to and from non-volatile media. Use
these variables to create scripts of commands (executed one after the other) and to configure the
boot process.

3.3.4 Kernel images downloadable via Ethernet and USB
Because U-Boot can download a kernel image using either Ethernet or USB, no flash programming
is needed to test a new kernel. This prevents the deterioration of flash caused by repeated flash
erases and writes.

3.3.5 Numbers assumed in hexadecimal format
Numbers used by U-Boot are always considered to be in hexadecimal format. For example, U-Boot
understands number 30100000 as 0x30100000.

3.4 The boot process

After power-up or reset, the processor loads the U-Boot boot loader in several steps.

 The processor does these steps:

 Executes a primary bootstrap that configures the interrupt and exception vectors, clocks,
and SDRAM

 Decompresses the U-Boot code from flash to RAM

 Passes execution control to the U-Boot

 U-Boot does these steps:

 Configures the Ethernet MAC address, flash, and, serial console

 Loads the settings stored as environment variables in non-volatile memory

 After a few seconds (a programmable length of time), automatically boots the pre-installed
kernel

To stop the automatic booting (autoboot) of the pre-installed kernel, send a character to the serial port
by pressing a key from the serial console connected to the target. If U-Boot is stopped, it displays a
command line console (also called monitor).

U-Boot 1.1.4 (Apr 20 2007 - 21:47:39) DUB-RevA
for Digi ConnectCore Wi-9C on Development Board

DRAM: 64 MB
NAND: 128 MiB
In: serial
Out: serial
Err: serial
CPU: NS9360 @ 154.828800MHz
Strap: 0x03
SPI ID:2007/02/21, V1_4, CC9C/CCW9C, SDRAM 64MByte, CL2, 7.8us, LE
FPGA: wifi.ncd, 2007/01/25, 17:49:41, V2.01
Hit any key to stop autoboot: 0

9

4 U-Boot commands

4.1 Overview

U-Boot has a set of built-in commands for booting the system, managing memory, and updating an
embedded system’s firmware. Custom built-in commands can be created by modifying U-Boot
source code.

4.2 Built-in commands

For a complete list and brief descriptions of the built-in commands, at the U-Boot monitor prompt,
enter either of these commands:

 help

 ?

A list of commands and help text like this is displayed:

help
? - alias for 'help'
autoscr - run script from memory
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
bootelf - Boot from an ELF image in memory
bootm - boot application image from memory
bootp - boot image via network using BootP/TFTP protocol
bootvx - Boot vxWorks from an ELF image
cmp - memory compare
coninfo - print console devices and information
cp - memory copy
crc32 - checksum calculation
date - get/set/reset date & time
dboot - Digi ConnectCore modules boot commands
dcache - enable or disable data cache
dhcp - invoke DHCP client to obtain IP/boot params
echo - echo args to console
envreset- Sets environment variables to default setting
fatinfo - print information about filesystem
fatload - load binary file from a dos filesystem
fatls - list files in a directory (default /)
flpart - displays or modifies the partition table.
go - start application at address 'addr'
help - print online help
icache - enable or disable instruction cache
icrc32 - checksum calculation
iloop - infinite loop on address range
imd - i2c memory display
iminfo - print header information for application image
imm - i2c memory modify (auto-incrementing)
imw - memory write (fill)
inm - memory modify (constant address)
intnvram- displays or modifies NVRAM contents like IP or partition table
iprobe - probe to discover valid I2C chip addresses
itest - return true/false on integer compare
loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line
loady - load binary file over serial line (ymodem mode)
loop - infinite loop on address range
md - memory display
mm - memory modify (auto-incrementing)

10

mtest - simple RAM test
mw - memory write (fill)
nand - NAND sub-system
nboot - boot from NAND device
nfs - boot image via network using NFS protocol
nm - memory modify (constant address)
ping - send ICMP ECHO_REQUEST to network host
printenv- print environment variables
printenv_dynamic- Prints all dynamic variables
rarpboot- boot image via network using RARP/TFTP protocol
reset - Perform RESET of the CPU
run - run commands in an environment variable
saveenv - save environment variables to persistent storage
setenv - set environment variables
sleep - delay execution for some time
sntp - synchronize RTC via network
tftpboot- boot image via network using TFTP protocol
update - Digi ConnectCore modules update commands
usb - USB sub-system
usbboot - boot from USB device
version - print monitor version

The available commands vary according to the capabilities of the hardware platform.

For more information about a command, enter:

help command name

For example:

help run
run var [...]
 - run the commands in the environment variable(s) 'var'

As the first characters of a command are entered, U-Boot searches its list of
built-in commands until it finds a match. For example, entering save or sav or
even sa, causes U-Boot to execute the saveenv command.

U-Boot needs enough characters to be entered to determine the command to
execute. For example, if loa is entered, U-Boot cannot tell whether to execute
loadb, loads or loady, and an Unknown command message is displayed.

11

4.2.1 Information commands
Commands that information about the development board, devices, memory, etc., include:

Command Description
bdinfo Prints board info structure.
coninfo Prints console devices and information.
date [MMDDhhmm[[CC]YY][.ss]] Gets, sets, or resets system date/time.
fatinfo <interface> <dev[:part]> Prints information about the file system from dev on

interface.
iminfo addr [addr ...] Prints header information for the application image starting

at the addr address in memory, including verification of the
image contents (magic number, header, and payload
checksums). Works only for Linux kernel images.

nand bad Shows NAND bad blocks.
nand info Shows available NAND devices.
version Displays U-Boot version and timestamp.

4.2.2 Network commands
Network-related commands include:

Command Description
bootp [loadAddress] [bootFilename] Boots the image over the network using the BootP/TFTP

protocol. If no argument is given, bootp takes the values
from the loadaddr and bootfile environment variables.

dhcp Requests an IP address from a DHCP server, set in the
serverip system variable. If the autoload variable is set to
yes, also transfers the file to which the bootfile
environment variable points to the loadAddress RAM
memory address by TFTP.

nfs [loadAddress] [host ip
addr:bootfilename]

Using NFS, transfers image bootfilename into the RAM
address loadAddress.

ping <pingAddress> Pings the IP address passed as parameter. If the other end
responds, this message is displayed:
host <pingAddress> is alive.

rarpboot [loadAddress] [bootfilename] Using RARP/TFTP, transfers image into the RAM address
loadAddress.

sntp Gets the date and time from the NTP server to which the
ntpserverip environment variable points..

tftpboot [loadAddress] [bootfilename] Using FTP, transfers image bootfilename into the RAM
address loadAddress.

If the autostart variable is set to 'yes', all commands (except
ping) boot the transferred image by calling the bootm
command. bootm does not work for WinCE images. If working
with a WinCE image file, either set the autostart variable to
'no' or delete it before executing these network commands.

12

4.2.3 USB commands
To access the USB subsystem, use the usb command, followed by its operations:

Command Description
usb reset Resets (rescans) USB controller.
usb stop [f] Stops USB [f]=force stop.
usb tree Shows USB device tree.
usb info [dev] Shows available USB devices.
usb storage Shows details of USB storage devices.
usb dev [dev] Shows or sets current USB storage device.
usb part [dev] Prints the partition table of one (dev) or all USB storage

devices.
usb read addr blk# cnt Reads cnt blocks starting at block blk# to RAM address

addr.
fatload usb <dev[:part]> <addr>
<filename>

Reads filename image from partition part of USB device
dev into the RAM memory address addr. If part is not
specified, partition 1 is assumed.

usbboot Boots from USB device.

4.2.4 Memory commands
These commands manage RAM memory:

Command Description
cmp[.b, .w, .l] addr1 addr2 count Compares memory contents from address addr to addr2

for as many count bytes, words, or long words.
cp[.b, .w, .l] source target count Copies memory contents from address source to target for

as many count bytes, words, or long words.
go addr [arg ...] Starts the application at address addr passing arg as

arguments.
md[.b, .w, .l] address [# of objects] Displays memory contents at address addr for as many

[#of objects] bytes, words, or long words.
mm[.b, .w, .l] address Modifies locations of memory, beginning at address, which

gets auto-incremented.
mw[.b, .w, .l] address value [count] Writes value into address for as many count bytes, words,

or long words.
nm[.b, .w, .l] address Modifies a fixed location of memory.
nand read addr off size Copies memory contents from flash address off to RAM

address addr for as many size bytes (only for NAND flash
memories).

nand write addr off size Copies memory contents from RAM address addr to flash
address off for as many size bytes (NAND flash memories
only).

nand erase [off size] Erases size bytes from address off. Erases entire device if
no parameters are specified (NAND flash memories only).
U-Boot skips bad blocks and shows their addresses.

nand dump[.oob] off Dumps NAND page at address off with optional out-of-band
data (only for NAND flash memories).

13

nboot address dev [off] Boots image from NAND device dev at offset off
(transferring it first to RAM address).

4.2.5 Serial port commands
Use these commands to work with the serial line:

Command Description
loadb [off] [baud] Loads binary file over serial line with offset off and baud

rate baud (Kermit mode).
loads [off] Loads S-Record file over the serial line with offset off.
loady [off] [baud] Loads binary file over the serial line with offset off and

baud rate baud (Ymodem mode).

4.2.6 I2C commands
These commands interface with the I2C interface:

Command Description
iloop chip address[.0, .1, .2] [# of
objects]

Loops, reading a set of I2C addresses.

imd chip address[.0, .1, .2] [# of
objects]

Displays I2C memory.

imm chip address[.0, .1, .2] Modifies I2C memory with an auto-incremented address.
imw address[.0, .1, .2] value [count] Fills an I2C memory range with value.
inm chip address[.0, .1, .2] Modifies memory, reads and keeps an address.
iprobe Discovers valid I2C chip addresses.
itest [.b, .w, .l, .s] [*]value1 <op>
[*]value2

Returns TRUE/FALSE on integer compare.

4.2.7 Environment variable commands
To read, write, and save environment variables, use these commands:

Command Description
printenv [name ...] If no variable is given as argument, prints all U-Boot

environment variables.
If a list of variable names is passed, prints only those
variables.

printenv_dynamic Prints all dynamic variables.
envreset Overwrites all current variables values to factory default

values.
Does not reset the wlanaddr or ethaddr variables or
any other persistent settings stored in NVRAM (see
topic 7.1).

saveenv Writes the current variable values to non-volatile
memory (NVRAM).

setenv name [value] If no value is given, the variable is deleted. If the
variable is dynamic, it is reset to the default value.
If a value is given, sets variable name to value value.

14

5 Environment variables

5.1 Overview

U-Boot uses environment variables to tailor its operation. The environment variables configure
settings such as the baud rate of the serial connection, the seconds to wait before auto boot, the
default boot command, and so on.

These variables must be stored in either non-volatile memory (NVRAM) such as an EEPROM or a
protected flash partition.

The factory default variables and their values also are stored in the U-Boot binary image itself. This
allows recovering the variables and their values at any time with the envreset command.

Environment variables are stored as strings (case sensitive). Custom variables can be created as
long as there is enough space in the NVRAM.

5.2 Simple and recursive variables

Simple variables have a name and a value (given as a string):

setenv myNumber 123456
printenv myNumber
myNumber=123456

To expand simple variables, enclose them in braces and prefix a dollar sign:

setenv myNumber 123456
setenv var This is my number: ${myNumber}
printenv var
var=This is my number: 123456

Recursive variables (or scripts) contain one or more variables within their own value. The inner
variables are not expanded in the new variable. Instead, they are expanded when the recursive
variable is run as a command, as shown here:

setenv dumpaddr md.b \${addr} \${bytes}
printenv dumpaddr
dumpaddr=md.b ${addr} ${bytes}
setenv addr 2C000
setenv bytes 5
run dumpaddr
0002c000: 00 00 00 00 00

To prevent variables from being expanded into other variables’ values, use the back slash \ before
$.

15

5.3 Scripts

In U-Boot, a script is made up of variables that contain a set of commands that are executed one
after another.

Consider this variable:

printenv cmd1
setenv var val;printenv var;saveenv

Running this script with run cmd1 creates the var variable with value val, prints the value val to
the console, and saves the variables to either the EEPROM or flash partition dedicated to
variables.

run cmd1
var=val
Saving Environment to Flash...
Un-Protected 1 sectors
Erasing Flash...
. done
Erased 1 sectors
Writing to Flash... done
Protected 1 sectors

Separate the commands in a script with semicolons (;). As with recursive variables, semicolons
must be preceded by a back-slash sign to prevent them from being interpreted as the termination
of the first command itself.

To save cmd1, enter:

setenv cmd1 setenv var val\;printenv var\;saveenv

For running commands stored in variables, use the run command and its variables separated by
spaces:

setenv cmd1 setenv var val
setenv cmd2 printenv var
setenv cmd3 saveenv
run cmd1 cmd2 cmd3

16

5.4 System variables

U-Boot uses several built-in system variables:

5.4.1 Common system variables

Variable Description
autoload If set to no (or any string beginning with n), the rarpboot, bootp, or

dhcp command performs a configuration lookup from the BOOTP /
DHCP server but does not try to load any image using TFTP.

autostart If set to yes, an image loaded using the rarpboot, bootp, dhcp or
tftpboot commands is automatically started (by internally calling the
bootm command).

baudrate The baud rate of the serial connection.
bootcmd Defines a command string that is automatically executed when the

initial countdown is not interrupted.
Executed only when the bootdelay variable is also defined.

bootdelay Seconds to wait before running the automatic boot process in
bootcmd.

bootfile Name of the default image to load with TFTP.
dhcp If set to on, enables the DHCP client to obtain a dynamic IP for the

Ethernet interface.
dhcp_wlan For modules with a WLAN interface, if set to on, enables the DHCP

client to obtain a dynamic IP for the WLAN interface.
dnsip IP address of the primary DNS server,
dnsip2 IP address of the secondary DNS server.
fileaddr The RAM address where the last file transferred by TFTP was placed.
filesize The size of the last file transferred by TFTP or USB.
gatewayip IP address used as network gateway.
ipaddr IP address of the target's Ethernet interface.
ipaddr_wlan IP address of the target's WLAN interface (for modules that have it).
netmask Subnet mask of Ethernet interface.
netmask_wlan Subnet mask of WLAN interface (for modules that have it).
ntpserverip NTP server IP address (for getting the date/time).
stdin Standard input system.
stdout Standard output system.
stderr Standard error output system.
serverip IP address of the host PC (for remote connections like TFTP transfers).
verify If set to n or no, disables the checksum calculation over the complete

image in the bootm command to trade speed for safety in the boot
process. Note that the header checksum is still verified.

17

5.4.2 Dynamic variables
Depending on the module, the partitioning information, and so on, U-Boot generates some
variables "on the fly" if they do not already exist in U-Boot.

These variables can be overwritten with setenv thus becoming standard U-Boot variables.
Dynamic variables which are not set with setenv also exist (they are automatically created), but
they cannot be printed with printenv.

Some of these variables are OS-specific for different OS implementations (Linux, Windows CE,
NET+OS). They provide special functionality for the OS running in the platform.

For more information, see the boot loader development chapter of the
development kit's documentation.

5.4.3 Digi custom variables
The development board in the kit may have two user buttons. If it does, U-Boot can detect which
one is pressed when it starts.

Pressing either key when the boot loader is starting, executes the key1 or key2 variable before the
bootcmd. This allows for different boot scripts, depending on the key pressed during boot, for
booting two different kernels, such as a dual Linux/Windows CE or two versions of the same OS.

If the key1 and key2 variables do not exist, the normal bootcmd is executed.

When the two keys are pressed during boot, both are detected as pressed, and both scripts are
launched. The script in variable key1 is always executed before the one in variable key2.

Detection of user keys can be disabled for customized hardware where these
keys do not exist. This requires reconfiguring and recompiling U-Boot. See
chapter 9 for information about U-Boot development.

5.4.4 Protected variables
Several variables are of great relevance for the system and are stored in a protected section of
NVRAM.

Some of these protected variables are, for example, the serial number of the module and the MAC
addresses of the network interfaces, which are programmed during production and normally should
not be changed.

18

6 Boot commands

6.1 Overview

U-Boot runs code placed in RAM, although it also can read from other media. The boot process
normally takes place in two steps:

 Reading the OS image from media (Ethernet, flash, USB) into RAM
 Jumping to the first instruction of the image in RAM

6.2 Reading images into RAM

6.2.1 From Ethernet
The most common way to boot an image during development is by transferring it using TFTP over
the Ethernet interface. To do this, use the tftpboot command, passing:

 The address of RAM in which to place the image (loadAddress)

 The image file name (bootfilename)

tftpboot <loadAddress> <bootfilename>

The TFTP transfer occurs between the serverip address (host) and the ipaddr address (target).
The host must be running a TFTP server and have bootfilename archive placed in the TFTP-
exposed directory.

For Linux kernel images, if the autostart variable is set to yes, this command directly boots the
kernel after downloading it.

6.2.2 From USB
Another way to boot an image is by reading it from a USB flash storage device. The USB disk must
be formatted in FAT file system.

To read an image from a USB flash disk, enter:

usb reset
fatload usb <dev>[:partition] <loadAddress> <bootfilename>

This command reads file bootfilename from device dev, partition partition of the USB flash disk
into the RAM address loadAddress. Device and partition are given as a number (0, 1, 2...).

If no partition is specified, partition 1 is assumed.

19

6.2.3 From flash
For standalone booting, the device can read the image from flash, avoiding dependency on any
external hardware.

In targets with NOR flash memories, do this with memory commands:

cp.[b/w/l] <sourceAddress> <loadAddress> <count>

This command copies count bytes, words, or long words (depending on the suffix used -: b, w, l -
from sourceAddress into loadAddress.

In targets with NAND flash memories, the special NAND commands must be used:

nand read <loadAddress> <sourceAddress> <count>

This command copies count bytes from sourceAddress into loadAddress.

6.3 Booting images in RAM

After the image is transferred to RAM, it can be booted it in either of two ways, depending on the
OS:

 For Windows CE images:

go <loadAddress>

 For Linux images:

bootm <loadAddress>

where loadAddress (in both cases) is the address in RAM at which the image resides.

Windows CE images must be compiled with the information
about the address in RAM from which they will be booted. For
example, if a WinCE kernel is compiled with a boot address of
0x2C0000, it can be transferred to a different address, but the
system can boot only from the compiled-in address.

20

6.4 Direct booting

To simplify the boot process, Digi's U-Boot version includes the dboot built-in command, which
reads the OS image from the media and runs it from RAM in a single step.

The syntax for the dboot command is:

dboot <os> <media>

where

 os is linux, wce, eboot, netos or any partition name.

 media is flash, tftp or usb.

If the dhcp variable is set to yes or on, the command first gets an IP address
from the DHCP server to which the serverip variable points.

For example, to boot linux from flash, execute:

dboot linux flash

To boot a partition from flash, a valid partition name must be provided. To print the partitions table,
use the flpart command (for more information about this command see topic 7.2). Then execute
the command with the selected partition name:

flpart
Nr | Name | Start | Size | Type | FS | Flags
--
 0 | U-Boot | 0 | 768 KiB | U-Boot | None | fixed
 1 | NVRAM | 768 KiB | 512 KiB | NVRAM | None | fixed
 2 | Kernel | 1280 KiB | 3 MiB | Linux-Kernel | None |
 3 | RootFS-JFFS2 | 4352 KiB | 16 MiB | Filesystem | JFFS2 | rootfs
 4 | User-JFFS2 | 20736 KiB | 12 MiB | Filesystem | JFFS2 |
 5 | Kernel-2 | 33024 KiB | 2 MiB | Linux-Kernel | None |
dboot Kernel-2 flash

Partition names are case sensitive, so kernel-2 is a partition
name different from Kernel-2.

21

6.4.1 Direct booting with Microsoft Platform Builder / Visual Studio
The eboot program is used to interconnect the target to the Windows CE development system
(Platform Builder or Visual Studio). Eboot sends BOOTME messages to the development system
program. These two programs talk to each other to transfer and debug the Windows CE kernel.

This is the command for booting with Platform Builder / Visual Studio:

dboot eboot

This command reads the eboot image from flash into a specific RAM address and jumps to this
image for execution.

6.5 Automatic booting

If U-Boot is not interrupted after the delay established in bootdelay, the automatic boot process
takes place. Automatic booting consists of running what is specified in the bootcmd environment
variable.

In other words, automatic booting has the same effect as doing either of the next two examples:

run bootcmd

boot

If, for example, to automatically boot a WinCE image from TFTP server, set bootcmd like this:

setenv bootcmd dboot wce tftp

Or, to automatically boot a Linux image from flash, set bootcmd like this:

setenv bootcmd dboot linux flash

If bootdelay is set to 0, the autoboot happens immediately
after U-Boot starts. To stop the process and enter the monitor,
press a key as soon as the first U-Boot output lines appear.

22

7 Using NVRAM

An embedded OS requires some persistent settings; for example, MAC address, IP address, Internet
gateway, flash partition table, and U-Boot environment variables. Some of these are changed only in
production and others only during custom setup.

These settings must be stored in non-volatile memory (NVRAM) so they are not lost when the target is
powered off.

 For modules that have an I2C EEPROM (such as the ConnectCore 9P family), NVRAM is the
EEPROM memory.

 For modules that do not have I2C EEPROM, a flash partition is reserved for this purpose.

The contents are protected by a CRC32 checksum. They also are mirrored to either a different I2C location
or a second flash partition. In this way, if anything goes wrong or data becomes corrupted, the good image
is taken and the bad one is automatically repaired when booting U-Boot or running the intvram command.

7.1 The intnvram command

Protected variables stored in NVRAM can be read, modified, erased or stored with the intnvram command.

Changes made to NVRAM with the intnvram command are kept in RAM. U-Boot writes the changes to
NVRAM only when the saveenv command or intnvram save command is executed.

Executing an envreset resets U-Boot environment variables
and saves them to NVRAM.

The syntax of the intnvram command is:

Usage: intnvram help|print <params>|printall|repair|reset|save|set <params>

 help : prints this
 print : prints selected parameters.
 E.g.: print module mac serialnr
 printall : prints complete contents and metainfo
 repair : Repairs the contents. If one image is
 bad, the good one is copied onto it.
 If both are good or bad, nothing happens.
 reset : resets everything to factory default values.
 save : saves the parameters
 set : sets parameters.

For help with this command, enter intnvram help.

To print the complete contents of the NVRAM settings, enter intnvram printall.

23

Either one parameter or a set of parameters can be set or printed. Parameters are grouped in
blocks. This is the complete parameters list with the possible values some of them can take:

params for "set" or "print" can be
 module [producttype=] [serialnr=] [revision=] [patchlevel=]
 [ethaddr1=] [ethaddr2=]
 network [gateway=] [dns1=] [dns2=] [server=] [netconsole=] [ip1=]
 [netmask1=] [dhcp1=] [ip2=] [netmask2=] [dhcp2=]
 partition [add] [del] [select=] [name=] [chip=] [start=] [size=]
 [type=] [flag_fixed=] [flag_readonly=]
 [flag_fs_mount_readonly=] [flag_fs_root=] [flag_fs_type=]
 [flag_fs_version=]
 os [add] [del] [select=] [type=] [start=] [size=]

Params trailed with '=' require a value in the set command. In the print
command, '=' mustn't be used.

Possible Values are
 os type: None,Critical,OS-Meta,U-Boot,Linux,EBoot,WinCE,Net+OS,
 Unknown,Application
 partition type: U-Boot,NVRAM,FPGA,Linux-Kernel,WinCE-EBoot,WinCE-Kernel,
 Net+OS-Kernel,Filesystem,WinCE-Registry,Unknown,
 Splash-Screen
 flag_fs_type: None,JFFS2,CRAMFS,INITRD,FlashFX,Unknown,YAFFS

Examples:
 intnvram print module ethaddr1 serialnr : prints mac address and
 serial number
 intnvram print partition select=0 name select=1 name : prints first and
 second partition
 name
 intnvram set network ip1=192.168.42.30 : changes the IP address

Specify the group of the parameter before the parameter itself. For example, to print the module’s
MAC address, execute:

intnvram print module ethaddr1
ethaddr1=00:40:9D:2E:92:D4

For printing different parameters of a block, the block must be used only once. For example, to
print the module IP and subnet mask of Ethernet interface, execute:

intnvram print network ip1 ethaddr1
ip1=192.168.42.30
ethaddr1=00:40:9D:2E:92:D4

To set a parameter a valid value must be provided, as shown here:

intnvram set network ip1=192.168.42.80

To access a partition parameter, address the specific partition with the parameter select=n, where
n is the index to the partition. This example prints the names of partitions 1 and 2:

intnvram print partition select=0 name select=1 name
name=U-Boot
name=NVRAM

24

7.1.1 Mappings of variables
Some of the protected variables in NVRAM are mapped to U-Boot environment variables.
Therefore, modifying them with intnvram command is the same as doing so with setenv
command. For security reasons, however, some variables cannot be modified with
the setenv command.

This table lists the mapped variables:

U-Boot variable NVRAM parameter Blocked for 'setenv'
ethaddr ethaddr1 X
wlanaddr ethaddr2 X
netmask netmask1
netmask_wlan netmask2
ipaddr ip1
ipaddr_wlan ip2
dnsip dns1
dnsip2 dns2
dhcp dhcp1
dhcp_wlan dhcp2
serverip server
gatewayip gateway

7.2 The flpart command

To print, modify, or restore the partitions table, use the flpart command. This U-Boot command
requires no arguments; the partitions table is created using a menu of options.

25

7.2.1 A partition table entry
A partition table entry contains these fields:

Field Description
Number Index of partition in the table
Name Name of the partition
Chip Index of flash chip (normally, only one)
Start Physical start address of the partition (in hex)
Size Size of the partition (in hex)
Type Partition type (what it will contain)

• U-Boot
• NVRAM
• FPGA
• Linux-Kernel
• WinCE-EBoot
• WinCE-Kernel
• Net+OS-Kernel
• Filesystem
• WinCE-Registry
• Unknown

FS File system that the partition contains:
• None
• JFFS2
• CRAMFS
• INITRD
• FlashFX
• YAFFS
• Unknown

Flags Flags (non-exclusive):
• read-only
• mount read-only
• rootfs

26

7.2.2 Changing the partition table
To modify the partition table, use the flpart command in U-Boot:

flpart
Nr | Name | Start | Size | Type | FS | Flags

 0 | U-Boot | 0 | 768 KiB | U-Boot | None | fixed
 1 | NVRAM | 768 KiB | 512 KiB | NVRAM | None | fixed
 2 | FPGA | 1280 KiB | 1 MiB | FPGA | None | fixed
 3 | EBoot | 2304 KiB | 1 MiB | WinCE-EBoot | None |
 4 | Registry | 3328 KiB | 1 MiB | WinCE-Registry | None |
 5 | Kernel | 4352 KiB | 20 MiB | WinCE-Kernel | None |
Commands:
 a) Append partition
 d) Delete partition
 m) Modify partition
 p) Print partition table
 r) Reset partition table
 q) Quit
Cmd (? for help)>

Partitions are added, modified, or deleted step-by-step; the command prompts for the necessary
information.

Start and Size values can be given as hexadecimal numbers (prefixed with 0x)
or as decimal numbers followed with k (for KiB) or m (for MiB).

The partition table also can be reset to the default values. In this case, because the partition table
differs according to the target’s OS, the desired OS can be selected.

Changes take effect only after quitting 'flpart' and saving the
changes.

When the size or start address of a partition has been changed,
it is always necessary to erase it and write a new image to it.

27

8 Firmware update commands

8.1 Overview

The boot loader, kernel, and other data stored in flash form the firmware of the device. Because
U-Boot can write any part of flash, its flash commands can be used to reprogram (update) any part
of the firmware. This includes the boot loader itself.

The update process normally takes place in three steps:

 Reading image from media (Ethernet, USB) into RAM memory

 Erasing the flash that is to be updated

 Copying the image from RAM into flash

8.2 Updating flash with images in RAM

Flash memory must be updated with images located in RAM memory. Images are moved to RAM
using either Ethernet or USB (see section 6.2 for more information).

To erase flash and copy the images from RAM to flash, use these commands:

 For NOR flash memory:

erase address +size
cp.[b|w|l] sourceAddress targetAddress count

The first command erases size bytes beginning at address. The second command copies count
bytes, words or long words (depending on the suffix used: b, w, l) from sourceAddress into
targetAddress.

 For NAND flash memory:

nand erase address size
nand write sourceAddress targetAddress count

The first command erases size bytes beginning at address. The second command copies count
bytes from sourceAddress into targetAddress.

The erasure of the flash comprises whole erase-blocks.
The address and size parameters must be multiples of the
erase-blocks of the flash memory. See the module's flash
datasheet for the erase-block size.

28

8.3 Direct updating

Digi's U-Boot version includes the built-in update command. This command copies the image from
the media to RAM, erases the flash size needed for the image, and moves the image from RAM
into flash in a single step, simplifying the update process.

Here is the syntax for update:

help update
update partition source [file]
 - updates 'partition' via 'source'
 values for 'partition': uboot, linux, rootfs, userfs, eboot, wce
 or any partition name
 values for 'source': tftp, usb
 values for 'file': the file to be used for updating

If the dhcp variable is set to yes or on, the command first gets an IP address
from the DHCP server pointed to by the serverip variable.

8.3.1 Update limits
The update command in U-Boot transfers files to RAM, erases the flash partition, and writes the
files from RAM into flash memory.

The file that is transferred is copied to a specific physical address in RAM; therefore, the maximum
length of the file to update is:

Update file size limit = Total RAM memory – RAM offset where the file was loaded

As a general rule, U-Boot does not allow updating a flash partition with a file size that exceeds the
available RAM memory. This means that, for example, if a module has 32MB RAM and 64MB flash
and the file for updating a partition is 35MB, U-Boot will not do it.

This limitation is due to the RAM memory size, as U-Boot first needs to transfer the file to RAM
before copying it to flash.

For updating partitions with files larger than the available RAM memory, see
your OS-specific update flash tool.

29

9 U-Boot development

U-Boot is an open source project. Sources are freely distributed, and can be modified to meet
requirements for a boot loader.

The project sources are ready to be installed and compiled in a Linux environment. If a Linux
machine is not available for development, install the Cygwin X-Tools software
(http://www.cygwin.com). The X-Tools provide a Unix-like development environment for Windows,
based on Cygwin and the GNU toolchain, to cross-compile the boot loader.

For information about installing the U-Boot sources, modifying platform-specific sources, and
recompiling the boot loader, see your development kit documentation. Procedures may vary
according to hardware platform and OS.

30

Index

A
autoload system variable16
automatic booting21
autostart system variable..........................16
available commands

and hardware platform.......................10
available RAM

and update limits................................28

B
baudrate system variable..........................16
bdinfo command11
BIOS ...6, 7
boot loader

defined ...7
boot process ...8
bootcmd system variable16
bootdelay system variable16
booting images in RAM.............................19
bootm command

and Windows CE images...................11
bootp command ..11
built-in commands

creating ..9

C
cmp command ..12
commands

boot ..18
built-in ..9
environment variables........................13
firmware update27
flpart ...24
information ...11
intnvram ...22
memory..12
network ..11
serial port ...13
type-ahead...10
update..28
USB..12

coninfo command......................................11
conventions in this manual..........................5
cp command..12
creating built-in commands9
custom variables17

D
date command ..11
dhcp command..11
dhcp system variable16
dhcp wlan system variable........................16
Digi custom variables................................17
direct booting...20
dnsip system variable16
dnsip2 system variable16
dynamic variables17

E
environment variable commands..............13
environment variables

simple and recursive14
envreset command13

F
FAT ...6
fatinfo command11
fileaddr system variable16
filesize system variable16
firmware

update commands27
flash

updating with images in RAM27
flpart command ...24

G
gatewayip system variable........................16
go command ...12

H
hardware platform

and available commands10

31

I
I2C .. 6
I2C commands ... 13
iloop command ... 13
imd command ... 13
iminfo command 11
imm command .. 13
imw command .. 13
information commands 11
inm command ... 13
intnvram.. 22
ipaddr system variable.............................. 16
ipaddr wlan system variable 16
iprobe command....................................... 13
itest command .. 13

L
loadb command .. 13
loads command .. 13
loady command .. 13

M
MBR.. 6
md command.. 12
memory

comparing.. 12
copying .. 12
copying contents from flash to RAM

address.. 12
copying contents from RAM to flash

address.. 12
displaying contents 12
dumping NAND page......................... 12
erasing... 12
modifying a fixed location 12
modifying contents............................. 12
writing values to................................. 12

memory commands 12
mm command... 12
mw command ... 12

N
nand bad command.................................. 11
nand dump command............................... 12

nand erase command............................... 12
nand info command 11
nand read command................................. 12
nand write command 12
nboot command12, 13
nboot memory

booting image from NAND device 13
netmask system variable 16
netmask wlan system variable.................. 16
network commands................................... 11
nfs command .. 11
nm command .. 12
non-volatile memory (NVRAM)

and persistent settings....................... 22
ntpserverip system variable...................... 16
NVRAM... 6

P
partition table

entries, contents of 25
modifying ... 26
resetting ... 26

persistent settings..................................... 22
ping command .. 11
printenv command 13
protected variables 17

R
rarpboot command.................................... 11
reading images into RAM 18
recursive variables.................................... 14

S
saveenv command.................................... 13
scripts.. 15
serial port commands 13
serverip system variable 16
setenv command 13
simple variables .. 14
sntp command .. 11
stderr system variable............................... 16
stdin system variable 16
stdout system variable 16
system variables 16

32

T
TFTP...6
tftpboot command11

U
U-Boot

boot process ..8
built-in commands................................9
command shell (monitor)7
commands ...9
described ...7
development29
hexadecimal assumed for numbers.....8
source code, modifying........................9
variables...8

update command28
update limits

and available RAM.............................28

updating flash..27
USB...6
USB commands ..12

V
variables

Digi custom ..17
Digi-custom ..17
dynamic..13, 17
environment13, 14
in scripts ...15
mapping of ...24
protected ..17
recursive...14
simple...14
system..16

verify system variable16
version command......................................11

	1 Conventions used in this manual
	2 Acronyms and Abbreviations
	3 Introduction
	3.1 What is a boot loader?
	3.2 What is U-Boot?
	3.3 U-Boot Features
	3.3.1 Customizable footprint
	3.3.2 Monitor
	3.3.3 Variables
	3.3.4 Kernel images downloadable via Ethernet and USB
	3.3.5 Numbers assumed in hexadecimal format

	3.4 The boot process

	4 U-Boot commands
	4.1 Overview
	4.2 Built-in commands
	4.2.1 Information commands
	4.2.2 Network commands
	4.2.3 USB commands
	4.2.4 Memory commands
	4.2.5 Serial port commands
	4.2.6 I2C commands
	4.2.7 Environment variable commands

	5 Environment variables
	5.1 Overview
	5.2 Simple and recursive variables
	5.3 Scripts
	5.4 System variables
	5.4.1 Common system variables
	5.4.2 Dynamic variables
	5.4.3 Digi custom variables
	5.4.4 Protected variables

	6 Boot commands
	6.1 Overview
	6.2 Reading images into RAM
	6.2.1 From Ethernet
	6.2.2 From USB
	6.2.3 From flash

	6.3 Booting images in RAM
	6.4 Direct booting
	6.4.1 Direct booting with Microsoft Platform Builder / Visual Studio

	6.5 Automatic booting

	7 Using NVRAM
	7.1 The intnvram command
	7.1.1 Mappings of variables

	7.2 The flpart command
	7.2.1 A partition table entry
	7.2.2 Changing the partition table

	8 Firmware update commands
	8.1 Overview
	8.2 Updating flash with images in RAM
	8.3 Direct updating
	8.3.1 Update limits

	9 U-Boot development

